If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-2x-18=0
a = 10; b = -2; c = -18;
Δ = b2-4ac
Δ = -22-4·10·(-18)
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{181}}{2*10}=\frac{2-2\sqrt{181}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{181}}{2*10}=\frac{2+2\sqrt{181}}{20} $
| 3x+x+24=96 | | 5w-4+46+90=180 | | F(-2)=3-2x | | A=7x+6+9x+3 | | 3x^2=183 | | Y=5x-0.15x^2+11 | | x-(x*0.15)=1000 | | 21x-9=360 | | x^2*3x^2=183 | | x8+x4=7 | | .05*(x)=500000 | | 2x-45=x+22 | | 2x^2+3x-93=0 | | 6x-4.6=2x-4.6 | | 2(1.5z+2.5)=11.0 | | 8a+3a-6a=-17=27 | | 0=720-90t | | y=0.3+2 | | -1/2=-1/9z+1/2 | | X+100-50x=120 | | 9v-54+54=-27+54 | | x*0.25x=35078 | | ((5x+7)/2)+((6x-3)/2)=6x | | (5x+7)+(6x-3)/2=6x | | 3y^2+21=102 | | 6y-25=10 | | (3x-45)=(2x+25) | | 4+16n+9n=-66 | | 1/3x=10x | | 7x-29+125=180 | | -30=3a-9^2 | | 4x+5+5x/22=180 |